The dihedral group $\mathcal D_{5}$ as a group of symplectic automorphisms on K3 surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dihedral Group D5 as a Group of Symplectic Automorphisms on K3 Surfaces

We prove that if a K3 surface X admits Z/5Z as a group of symplectic automorphisms, then it actually admits D5 as a group of symplectic automorphisms. The orthogonal complement to the D5-invariants in the second cohomology group of X is a rank 16 lattice, L. It is known that L does not depend on X: we prove that it is isometric to a lattice recently described by R. L. Griess Jr. and C. H. Lam. ...

متن کامل

The Dihedral Group D5 as Group of Symplectic Automorphisms on K3 Surfaces

We prove that if a K3 surface X admits Z/5Z as group of symplectic automorphisms, then it actually admits D5 as group of symplectic automorphisms. The orthogonal complement to the D5-invariants in the second cohomology group of X is a rank 16 lattice, L. It is known that L does not depend on X: we prove that it is isometric to a lattice recently described by R. L. Griess Jr. and C. H. Lam. We a...

متن کامل

On Automorphisms Group of Some K3 Surfaces

In this paper we study the automorphisms group of some K3 surfaces which are double covers of the projective plane ramified over a smooth sextic plane curve. More precisely, we study some particlar case of a K3 surface of Picard rank two. Introduction K3 surfaces which are double covers of the plane ramified over a plane sextic are classical objects. In this paper we determine the automorphisms...

متن کامل

Symplectic Automorphisms and the Picard Group of a K3 Surface

Let X be a K3 surface, and let G be a finite group acting on X by automorphisms. The action of G on X induces an action on the cohomology of X . We assume G acts symplectically: that is, G acts as the identity on H(X). In this case, the minimum resolution Y of the quotient X/G is itself a K3 surface. Nikulin classified the finite abelian groups which act symplectically on K3 surfaces by analyzi...

متن کامل

On Symplectic and Non–symplectic Automorphisms of K3 Surfaces

In this paper we investigate when the generic member of a family of complex K3 surfaces admitting a non–symplectic automorphism of finite order admits also a symplectic automorphism of the same order. We give a complete answer to this question if the order of the automorphism is a prime number and we provide several examples and partial results otherwise. Moreover we prove that, under certain c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2011

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2011-10650-6